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S1. Scaling analysis

S1.1. Mountain building processes

To form mountain ranges, horizontal forces must be applied to lithospheric plates, to

drive them together and to cause crustal shortening and thickening. Isostatic compensa-

tion of the thickened crust then buoys up the mountain range to form high topographic

amplitudes relative to the lowlands. When crustal shortening occurs, the forces driving

the material together do work against resistive stresses, mainly against gravity. Thus the

formation of both mountains and crustal roots is associated with an increase in gravita-

tional potential energy, and part of the work done by forces that drive the plates together

creates that potential energy.

S1.1.1. Gravitational potential energy

The potential energy is defined as the line integral of a force causing displacement

integrated along the component of displacement:

∫ −→
F · −→ds. (S1)

We consider the potential energy stored in a column of material of unit cross-sectional

area, which is the potential energy per unit surface of the earth (Fig. S1a) [Molnar and

Lyon-Caen, 1988; Schmalholz et al., 2014; England and McKenzie, 1982; Turcotte and

Schubert , 2002]. The vertical force per unit area is the product of gravity, density, and

thickness of the overlying layer (ρgh). Work is done against such a force in the vertical

direction. The potential energy per unit area of a column of material above a given depth
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can be calculated as the integral of the lithostatic pressure from the Earth’s surface to

that depth.

If the compensation depth is taken at a certain depth in the mantle (z = H0+∆H+hm),

the lithostatic pressure in the lowlands, PL(z), is given by:

PL(z) = ρcgH0 + ρmg(∆H + hm) (S2)

where ρc and ρm are the densities of the crust and mantle, assumed constant here, and

H0 is the crustal thickness. In a mountainous region or a plateau with an elevation of h

and a crustal root extending to a depth ∆H beneath the normal crustal thickness H0, the

lithostatic pressure, PM(z) can written as:

PM(z) = ρcg(h+H0 + ∆H) + ρmghm (S3)

with −h ≤ 0 ≤ H0 + ∆H + hm. Isostatic compensation requires that the lithostatic

pressure at depth z = H0 + ∆H is constant, and PL = PM , therefore, ∆ρ∆H = ρcH,

where ∆ρ = ρm − ρc.

The difference in potential energy per unit area beneath the mountains and lowlands

is:

∆GPE =
∫ H0+∆H+hm

−h
[PM(z)− PL(z)]dz (S4)

= ρcgh(
h

2
+H0 + ∆H + hm)

−∆ρg∆H(
∆H

2
+ hm)

Considering the depth of compensation at the bottom of the crustal root (z = H0+∆H),

the change in potential energy between mountains and lowlands becomes:

∆GPE = ρcgh(
h

2
+H0 + ∆H)−∆ρg

∆H2

2
(S5)
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= ρcgh(
h

2
+H0 +

∆H

2
).

S1.1.2. Change in GPE per unit length

Molnar and Lyon-Caen [1988] explored further the considerations for gravitational po-

tential energy in the formation of mountain ranges. They showed that when the forces

driving the plates together can no longer supply the energy needed to elevate a high range

or a plateau higher, the mountain range is likely to grow laterally in width instead of

increasing in height. This can be shown with a simple mathematical argument.

As shown previously, the potential energy created in a crustal layer displaced horizon-

tally by an amount d, such that a mountain range of width w and height h forms (Eq.

5), is given by:

∆GPE(w, h, d) = ρcgwh(
h

2
+H0 +

∆H

2
). (S6)

If there is a further displacement d, such that the total displacement is 2d, Molnar and

Lyon-Caen [1988] note that there are 2 possibilities for deformation: one in which the

elevation could increase to 2h and the thickness of root would increase to 2∆H, or another

when the width increases to 2w. In the first case, the potential energy per unit length is:

∆GPE(w, 2h, 2d) = 2ρcgwh(h+H0 + ∆H). (S7)

And in the second, is:

∆GPE(2w, h, 2d) = 2ρcgwh(
h

2
+H0 +

∆H

2
). (S8)

The difference in potential energy per unit length of a range created by doubling its

width from that created by doubling its height is:

δGPE = ∆GPE(w, 2h, 2d)−∆GPE(2w, h, 2d) (S9)
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= ρcgwh(h+ ∆H)

=
ρcρm
∆ρ

gwh2.

Equation (9) shows that due the square dependence on h, more work must be done to

increase the range in height than laterally.

A similar reasoning can be done to illustrate that shortening a half-width area w/2 to

elevate it to a height h, requires half the energy required to elevate an area of width w.

This suggests that extra energy is available to elevate the mountain range of width w/2

by at least 50% more (> 1.5h).

∆GPE(w/2, 1.5h) =
3

4
ρcgwh(

3h

4
+H0 +

3∆H

4
). (S10)

Then the difference in potential energy per unit length is:

δGPE = ∆GPE(w, h)−∆GPE(w/2, 1.5h) (S11)

= ρcgwh(
7H0

16
− h

16
− ∆H

16
)

= ρcgwh(
7H0

16
− h

16
(1 +

ρc
∆ρ

)) >
h

4
> 0

The inequality in (11) is true for natural parameters, for example, if one assumes that

H0 > 2h and that (1 + ρc
∆ρ

) < 10, which are reasonable assumptions for crustal geometries

and materials. We explore the importance of this inequality, due to its connection to

shortening a homogeneous layer versus shortening a heterogeneous layer (i.e. with strong

crustal blocks). In the presence of heterogenous crustal blocks, less material is available

for deformation (i.e. shorter width), the energy has a finite space for propagation, and we

can expect further uplift, compared to a homogenous layer case. This will be seen later

in simulation results with or without the presence of strong blocks.
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S1.1.3. Resisting stresses

Viscous forces also resist the deformation driven by the compressional forces. In a

viscous medium, these stresses can be approximated as:

σ = 2ηε̇ ∼ 2η
u0

L
(S12)

where L is a characteristic length, ε̇0 = u0
L

is the characteristic strain rate of the system,

η0 is the viscosity of the crustal material and u0 is the horizontal convergence velocity.

S1.1.4. Maximum height

As seen before, it is more favourable to propagate higher amplitudes laterally than

vertically. Therefore, for a given driving force, the mountain range will not necessarily

reach a higher elevation. Instead, the mountain range should reach a limiting elevation

and crustal thickness before the energy starts spreading laterally, regardless of how strong

the materials constituting them. The maximum elevation of a mountain range for a certain

applied force, is found from:

ρcgh(
h

2
+H0 +

ρch

2∆ρ
) = 2η

u0

L
d (S13)

1

2
ρcgh

2(1 +
ρc
∆ρ

) + ρcgH0h− 2η
u0

L
d = 0 (S14)

The last equation is a quadratic equation in h of the form ah2 + bh+ c = 0, where the

maximum elevation can be calculated as:

hmax =
b

2a
=

∆ρ

ρm
H0 (S15)
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S1.2. Argand number

Based on the above considerations, England and McKenzie [1982] defined the Argand

number, which is the ratio between an estimate of the excess pressure arising from a

crustal thickness contrast of order L and the stress required to deform the medium at a

strain rate characteristic of the system:

Ar =
P (L)

τ(ε̇0)
(S16)

where P (L) is the excess pressure in the system and τ(ε̇0) is the viscous resistive stresses

at the characteristic strain rate.

The Argand number predicts that at high values, the excess pressure will dominate

and the material will flow due to pressure gradients, while for a low Argand number,

the viscous stresses are high and can sustain higher pressures and higher elevations. As

such, the Argand number can be interpreted as a measure of the competition between

two processes: relaxation in the vertical plane due to buoyancy forces which tends to

produce a plane strain situation, and a horizontal flow controlled by the geometry and

the boundary conditions in the horizontal plane.

However, different formulations of the Argand number can be found in the published

literature, depending on the complexity assumed in models and the definition of the

characteristic length scale, L: original formulation for power-law rheology [England and

McKenzie, 1982], plastic rheology [Vilotte et al., 1986], temperature formulation [England

and Houseman, 1989], or more recently, a buoyancy formulation [Bajolet et al., 2013]. The

Argand number was also applied to other phenomena such as salt tectonics [Fernandez

and Kaus , 2014]. Moreover, some authors have used a variation of the Argand number,

called the Ramberg number, Rm [Weijermars and Schmeling , 1986; Medvedev , 2002].
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The Argand number was calculated here using different choices of the characteristic

length scale, L, as defined in the literature: the initial thickness of the lithosphere L =

H0, the indenting distance L = W0 − Wf , and the width of the continental indentor

L = W0 [Vilotte et al., 1986]. Despite the different choices, all formulations show the same

trend. Moreover, we note that formulations that contain only initial values [England and

McKenzie, 1982] have a greater advantage over those that need information about the

final stages of evolution (i.e. Bajolet et al. [2013]). This suggests that initial conditions

prior to collision already allows prediction of the outcome of the simulation. Therefore, we

keep with the original formulation from England and McKenzie [1982], where the Argand

number for a viscous material is given by:

Ar =
ρcgH0(1− ρc

ρm
)

η(u0/H0)
(S17)

where ε̇0 = u0/H0 is the characteristic strain rate, η is the effective viscosity, ρc and ρm

are the densities of the crust and mantle, u0 characteristic velocity (convergence velocity),

H0 thickness of lithosphere, and g is the gravitational acceleration.

S1.2.1. Gravitational flow

When the forces driving convergence and sustaining mountain growth are removed or

diminished (as a result of slab break-off), the system will try to minimize the excess of

potential energy. In this case, the material will flow laterally by gravitational flow, and we

show that the topographic amplitude decreases exponentially with time. Let us consider

an elevated area of radius r as in Fig. S1b, surrounded by lowlands, with a difference in

height of h. The compensation depth is taken at z = H0. The upward and downward
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force acting on the flanks of the mountains are:

Fup = pMA = ρcg(H0 + h)πr2 (S18)

Fdown = pLA = ρcgH0πr
2

Therefore, the net buoyancy force is:

Fbuoy = Fup − Fdown = ρcghπr
2. (S19)

The viscous resistance acts to hamper the fast lateral collapse of the flanks. The viscous

resistance in a cylinder can be approximated as:

Fres = τ × 2πrH0 (S20)

= 2ηε̇× 2πrH0

∼ 4πH0ηuo

From the force balance, Fbuoy = Fres, we have:

u0

h
=

ρgr2

4ηH0

. (S21)

The time dependence of h can be determined from the continuity equation [England

and McKenzie, 1982]:

∂u

∂t
= −∇ · (hu) (S22)

Combining the last 2 equations, it follows that:

u0

h
=

ρgr2

4ηH0

= −1

h

∂h

∂t
(S23)

Integrating, we obtain an exponential decay of h with time t:

h = h0e
−ρcgr

2t
4ηH0 (S24)
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where h0 is the maximum amplitude before gravitational flow. Equation S24 can be

rewritten as:

h = h0e
− ttr (S25)

where tr, the characteristic time for exponential relaxation of the flanks, is given by:

tr =
4ηH0

ρcgr
2 (S26)

S2. Initial buoyancy ratio

Fig. S2 shows the evolution of topographic amplitude during homogenous shortening

for different densities of the crust. The evolution of topographic amplitude is given by

[Turcotte and Schubert , 2002]:

h = H0(1− ρc
ρm

)(β − 1) (S27)

β =
W0

W

where β is the compression factor and is the ratio between the initial width and the current

width, H0 is the initial thickness, ρc is the density of the crust, and ρm is the density of the

mantle. Fig. S2 shows that with increasing compression (or with time if compressional

forces are kept constant), the topographic amplitude of a lighter crust increases faster

than for a denser crust. This phenomenon is also observed in our numerical results, that

simulations with a lighter crust that are subjected to compression, will develop higher

topographic amplitudes on average compared to simulations with a less dense crust.

S3. Numerical simulations

Parameters for the simulations displayed in figures are given in Table S1.
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  Figure S1. a) Sketch of building gravitational potential energy in mountain building. b)

Sketch of forces during gravitational flow.
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Figure S2. Topographic amplitude growth during homogenous shortening. h represents

topography amplitude in km, and β represents the compression factor and is the ratio between

the initial width and the current width. Calculations are done for two crustal densities to show

that for a lighter crust, topographic amplitude increases faster during shortening compared for

the case with a denser crust.
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Parameter values displayed in the figures

Simulation ρOUM ηOUM ρOC ηOC ρIUM ηIUM ρIC ηIC ρAUM ηAUM ρAC ηAC Forcing

B00 3300 1e23 3200 1e20 3100 1e23 3100 5e20 3000 1e22 3000 1e22 FS

C00 (ref) 3300 1e23 3200 1e20 3100 1e23 3100 5e20 3000 1e21 3000 1e22 FS

SBB00 3300 1e23 3200 1e20 3100 1e23 3100 5e20 3000 1e22 3000 1e22 SB

P5B00 3300 1e23 3200 1e20 3100 1e23 3100 5e20 3000 1e22 3000 1e22 EF

SBP5B00 3300 1e23 3200 1e20 3100 1e23 3100 5e20 3000 1e22 3000 1e22 EF+SB

SBP5UPA01 3300 1e23 3100 1e20 3100 1e23 3100 5e20 3000 1e21 3000 1e21 EF+SB

SBP5UPA08 3300 1e23 3100 1e20 3100 1e23 3100 5e20 3100 1e21 3100 1e21 EF+SB

SBP5UPA29 3300 1e23 3100 1e20 3100 1e23 3100 5e20 3000 1e23 3000 1e23 EF+SB

SBP5UPA36 3300 1e23 3100 1e20 3100 1e23 3100 5e20 3100 1e23 3100 1e23 EF+SB

Table S1. Parameters table for the simulations displayed in figures. Each phase has 2

properties: density (ρ) and viscosity (η). Values are in [ρ] = kg/m3 and [η] = Pa.s. Phases:

OUM - Oceanic Upper Mantle Lithosphere, OC - Oceanic Crust, IUM - Indentor Upper Mantle

Lithosphere, IC - Indentor Crust, AUM - Asian Upper Mantle Lithosphere, AC - Asian Crust.

In addition, the properties of the asthenospheric mantle (ρm = 3200 kg/m3, ηm = 1e20 Pa.s), the

air (ρair = 0 kg/m3, ηair = 1e18 Pa.s) and lower mantle (ρLM = 3250 kg/m3, ηLM = 1e21 Pa.s)

are the same for all simulations. Symbols in the right column mean: FS - free subduction, SB -

with strong blocks (ρSB = 3100 kg/m3, ηSB = 5e23 Pa.s) and EF - external forcing with Vpush

= 5 cm/yr. Due to the small number of models displayed in this paper, the nomenclature of all

models is as follows: 1) a set of simulations with FS are labeled A, B, C and represent simulations

where slab and continental indentor parameters were tested, 2) another set of simulations with

FS are labeled UPA, UPB, UPC in which upper plate parameters were tested, and 3) simulations

with EF just have an additional prefix SB for strong blocks and/or P5 for pushing with Vpush =

5 cm/yr.
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